Postingan

Menampilkan postingan dari Januari, 2022

Koordinat kutub dan koordinat kartesius

Gambar
Koordinat kutub dan koordinat kartesius Koordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan P(x,y). Sistem koordinat cartesius juga bisa digunakan pada dimensi lebih tinggi, misalnya 3 dimensi yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan y. Koordinat kutub atau koordinat polar merupakan sistem koordinat 2 dimensi, dimana titik bidang ditentukan dari jarak titik yang sudah ditetapkan dan besar sudut ditentukan dari arah yang sudah ditetapkan. Hubungan Koordinat Cartesius dan Koordinat Kutub Koordinat cartesius dan koordinat kutub serta cara konversi bisa dilakukan dengan menggunakan rumus. Pada gambar tersebut dapat dilihat bahwa koordinat cartesius ditujukan titik P (x,y) dan koordinat kutub P(r,ϑ) dan bisa ditentukan dengan rumus Jadi, jika diketahui koordinat cartesius P(x,y), maka koordinat kutub bisa ditentukan dengan rumus: Sedan

Identitas trigonometri

Gambar
  Identitas trigonometri Identitas trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan. rumus identitas trigonometri Kebenaran suatu relasi atau suatu kalimat terbuka sebagai suatu identitas perlu diverifikasi atau dibuktikan berdasar aturan atau rumus dasar yang mendahuluinya. CONTOH SOAL IDENTITAS TRIGONOMETRI: Contoh 1: (Pembuktian dilakukan dengan mengubah bentuk ruas kanan untuk disederhanakan

Sudut-sudut berelasi pada kuadran I, II, III, dan IV

Sudut-sudut berelasi pada kuadran I, II, III, dan IV Rumus Sudut Berelasi Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif. Sudut Berelasi di Kuadran I Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Berelasi di Kuadran II Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot α sin (180° − α) = sin α cos (180° − α) = -cos α tan (180° − α) = -tan α Sudut Berelasi Kuadran III Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (180° + α) = -s

Sudut-sudut berelasi

  Sudut-sudut berelasi Sudut Berelasi –   Adalah perluasan definisi dasar ilmu trigonometri tentang kesebangunan pada segitiga siku-siku yang memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°).   Rumus Sudut Berelasi Dengan memakai sudut-sudut relasi, kita mampu menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut negatif.   Sudut Relasi Kuadran I Untuk α lancip, maka (90° − α°) menghasilkan sudut-sudut kuadran I. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (90° − α ° ) = cos α ° cosec (90° − α ° ) = sec α ° cos (90° − α ° ) = sin α ° sec (90° − α ° ) = cosec α ° tan (90° − α ° ) = cot α ° cot (90° − α ° ) = tan α °   Sudut Relasi Kuadran II Untuk α lancip, maka (90° + α°) dan (180° − α°) menghasilkan sudut-sudut kuadran II dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (90° + α ° ) = cos α ° cosec (90° + α ° ) = sec α cos (90° + α °

Soal kontekstual berkaitan dengan perbandingan trigonometri pada segitiga siku-siku

Gambar
Masalah Kontekstual mengenai Perbandingan Trigonometri pada Segitiga Siku-siku (Sudut Elevasi dan Sudut Depresi) Sudut Elevasi  adalah sudut yang terbentuk oleh garis horizontal dengan mata pengamat dengan arah pandang ke atas. Sudut Depresi  adalah sudut yang terbentuk oleh garis horizontal dengan mata pengamat dengan arah pandang ke bawah. Contoh soal :  1. Sebuah pohon berjarak 130 meter dari seorang pengamat dengan tinggi mata pengamat dari tanah adalah 168 cm. Apabila sudut elevasi yang terbentuk adalah 60° dari mata pengamat ke pucuk pohon, maka tinggi pohon tercebut adalah … Jawab :  Dik: Jarak pengamat ke pohon: 130 meter Tinggi pengamat: 168 cm = 1,68 meter Sudut Elevasi 60° Dit: Tinggi pohon. Penyelesaian: Pertama. Buatlah ilustrasinya Kedua. Buatlah pemisalan agar memudahkan kita dalam mencari perbandingannya.  Misalkan: Tinggi pohon – tinggi pengamat       =  t Jarak pengamat ke pohon                 = x Sehingga kita bisa membuat ilustrasi yang lebih sederhana dengan mengg