Persamaan dan pertidaksamaan nilai mutlak

Persamaan nilai mutlak

Setelah kita belajar bentuk umum dan sifat-sifat nilai mutlak, sekarang akan dibahas terkait persamaan nilai mutlak yang mana “persamaan” itu sendiri ditandai dengan menggunakan tanda sama dengan (=). Biasanya, sebuah soal persamaan nilai mutlak akan meminta kita untuk mencari himpunan penyelesaian dari persamaan tersebut menggunakan aljabar dan sifat-sifat yang ada pada nilai mutlak.

Agar materi persamaan nilai mutlak dapat lebih dimengerti, perhatikan contoh soal di bawah ini beserta dengan penyelesaiannya.

Contoh soal

1. Carilah himpunan penyelesaian dari |x + 1| = 2x – 3.

Penyelesaian = 

|x + 1| = 2x - 3

|x+1|² = (2x - 3)²

(x + 1)² = 4x² - 12x + 9

x² + 2x + 1=  4x² - 12x + 9

3x² - 14x + 8 = 0

⅓ (3x - 12) (3x - 2) = 0

(x - 4) (3x - 2) = 0

Jadi, himpunan penyelesaiannya adalah x = 4 atau x = ⅔. 

2. Carilah himpunan penyelesaian dari  

–3|x – 7| + 2 = –13

Jawab:

–3|x – 7| + 2 = –13

–3|x – 7| = –13 – 2

–3|x – 7| = –15

|x – 7| = –15/ –3

|x – 7| = 5

Selesai sampai solusi diatas, maka nilai x mempunyai dua nilai

x – 7=5

x=12

atau

x – 7 = – 5

x=2

sehingga hasil akhir nilai x adalah 12 atau 2

3. Cari himpunan penyelesaian dari |2x – 5| = 7

Penyelesaian = 

|2x – 5| = 7

2x – 5 = 7 atau 2x – 5 = –7

2x – 5 = 7

2x = 7 + 5

2x = 12

x = 6

Atau

2x – 5 = –7

2x = –7 + 5

2x = –2

x = –1

Jadi, himpunan penyelesaian dari |2x – 5| = 7 adalah {–1, 6}.


Pertidaksamaan nilai mutlak

Selanjutnya akan kita bahas tentang pertidaksamaan nilai mutlak. Berbeda dari persamaan, pertidaksamaan ditandai dengan tanda kurang dari (<), kurang dari atau sama dengan (), lebih dari (>), atau lebih dari atau sama dengan ().

Sama halnya denga persamaan nilai mutlak, sebuah soal pertidaksamaan nilai mutlak biasanya meminta kita untuk mencari himpunan penyelesaian dari pertidaksamaan tersebut.

Namun perlu digaris bawahi bahwa dalam penghitungan sebuah pertidaksamaan kita harus lebih berhati-hati dan tidak boleh asal membagi kedua ruas seperti saat mengerjakan soal persamaan, karena tanda dari pembagi (plus atau minus) dapat membuat tanda dari sebuah pertidaksamaan menjadi kebalikannya.

Contoh soal 

1. Temukan himpunan penyelesaian 

|6x – 3 | ≥ 9

Penyelesaian = 

|6x – 3 | ≥ 9

6x – 3 ≤ –9  atau  6x – 3 ≥ 9

6x – 3 ≤ –9

6x ≤ –9 + 3

6x ≤ –6

x ≤ –1

atau

6x – 3 ≥ 9

6x ≥ 9 + 3

6x ≥ 12

x ≥ 2

Jadi, himpunan penyelesaian |6x – 3 | ≥ 9 adalah {x | x ≤ –1 atau x ≥ 2}.

2. Tentukan himpunan penyelesaian dari |2x – 7| ≥ |3x + 2|

Penyelesaian =

|2x – 7| ≥ |3x + 2|

2x – 7 ≥ 3x + 2 atau 2x – 7 ≤ – (3x + 2)

2x – 7 ≥ 3x + 2

– 7 – 2 ≥ 3x – 2x

–9 ≥ x

x ≤ –9

Atau

2x – 7 ≥ – (3x + 2)

2x – 7 ≥ – 3x – 2

2x + 3x ≥ – 2 + 7

5x ≥ 5

x ≥ 1

Jadi, himpunan penyelesaian dari |2x – 7| ≥ |3x + 2| adalah {x | x ≤ –9 atau x ≥ 1}.

3. Cari himpunan penyelesaian dari |2x – 3| < 5

Penyelesaian = 

|2x – 3| < 5

–5 < 2x – 3 < 5

–5 + 3 < 2x < 5 + 3

–2 < 2x < 8

–1 < x < 4

Jadi, himpunan penyelesaian dari |2x – 3| < 5 adalah {x | –1 < x < 4}.

Daftar pustaka

Diana, Regi. 2021. Nilai mutlak: persamaan, pertidaksamaan, & contoh soal. Rumus pintar.

 


Komentar

Postingan populer dari blog ini

Identitas trigonometri

INTEGRAL FUNGSI ALJABAR